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Note: This report is the culmination of applied research in datum error estimation 
performed by former NOAA employee, A. Nicholas Bodnar in 1981. The 
methodology developed in this work for estimating errors has been operationally 
adopted to estimate individual tide station datum errors by NOAA/CO-OPS for 
several applications. It has been used in identifying gaps in the National Water 
Level Observation Network for estimating datum errors in the tidal models used in 
the NOAA VDatum tool and will be used to provide users information on datum 
uncertainty on the NOAA web site. We are publishing the final draft report in its 
original form provided by the author back in 1981. 
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ABSTRACT 
 
This paper develops multiple curvilinear regression equations that estimate the accuracy 
of computed 19 year equivalent tidal datums at tide stations with one or more months of 
data. These regression equations are simple to use, quantitative, and consider individual 
station characteristics. The parameters affecting the accuracy of the computed tidal 
datums are discussed along with the relative accuracy of the standard method and the 
alternate method of simultaneous comparison. 
 

BACKGROUND 
 
Tidal datums are vertical datums derived from the rise and fall of the oceanic tide. 
Traditionally these datums were established as the reference surface for water depths on 
nautical charts and land elevations on maps. A relatively new use for tidal datums is the 
establishment of marine boundaries. The offshore oil and mineral industries have created 
the need for precisely defining the State-Federal boundary to determine governmental 
jurisdiction. The fisheries Conservation Management Act of 1976 extends the jurisdiction 
of the United States 200 nautical miles seaward creating a new international boundary. 
Finally, as society places increasing value on the coastal zone, wetlands in particular, 
Private-State marine boundaries are becoming even more critical. 
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These marine boundaries are defined by the intersection of a tidal datum with the land. In 
the case of offshore boundaries this intersection of water and land is the horizontal 
reference line from which the offshore boundaries are measured and is usually based on 
the mean lower low water line. The Private-State boundaries are usually defined directly 
by the mean high water line. 
 
The accuracy of these horizontal marine boundaries is a function of the slope of the beach 
and the vertical error in determining the required tidal datum. Unfortunately, a small error 
in the vertical tidal datum results in a considerable error in the horizontal line on beaches 
with shallow slopes. For example, an error of 0.1 feet in the vertical datum results in a 
horizontal error of 10 feet on a beach with a one percent slope. 
 
For technical and legal reasons, 19 years of tidal data are required for an accurate tidal 
datum at any given location. Technically, the forces affecting the tides are periodic. The 
longest period, considered for the computation of tidal datums, is the regression of the 
moons nodes which is 18.6 years. This period is rounded to 19 years to average the yearly 
weather cycle. Legally, the Supreme Court, in Borax Consolidated v. City of Los Angeles 
(296US1935) recognized these technical requirements when it ruled that “to ascertain the 
mean high tide line with requisite certainty in fixing the boundary of valuable tidelands 
…, an average of 18.6 years should be determined as near as possible.” The Court went 
on to endorse the methods of tidal datum determination used by the National Ocean 
Survey.1 
 
The National Ocean Survey (NOS) uses two methods of simultaneous comparison 
computations to estimate the 19-year tidal datums, “as near as possible” from shorter 
measurements. The “Standard Method” (sometimes called the range ratio method) 
assumes that: (1) The difference between the mean tide level over the period of 
observation and the actual 19-year mean tide level is the same at both the primary control 
and subordinate tide stations.2 (2) The ratio of the observed ranges to the actual 19-year 
range is the same for both stations.  Therefore, the mean high water (MHW) and mean 
low water (MLW) datums are computed by first determining the corrected mean tide 
level and then subtracting one-half the corrected mean range to get MLW. MHW is then 
determined by adding the corrected range to MLW. 
 
The standard method is preferred by NOS. However, when the full range of tide can not 
be measure the “Alternate Method” (Sometimes called the height difference method) is 
used. This method computes each datum directly and only assumes that the difference 
between the desired datum over the period of observations and the actual 19 year value of 
that datum is the same at both control and subordinate stations (Marmer 1951). Of course, 
no simultaneous comparison method is perfect and the resulting computations have 
inaccuracies since the assumptions are not always valid.3 

1 The National Ocean Survey (formerly the Coast and Geodetic Survey) is part of the National Oceanic and 
Atmospheric Administration (NOAA) which is in the U.S. Department of Commerce. 
2 A primary control station has at least 19 years of continuous observations. This data series is used to 
reduce a relatively short data series from subordinate tide stations. 
3 Appendix A list the equations used in the Simultaneous Comparison Computations. 
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PRESENT METHOD FOR ESTIMATING ACCURACY 
 
Accuracy estimates for short term observations are presently based on an analysis by 
Swanson (1964). Swanson selected station pairs with 16 to 19 years of simultaneous data 
to determine the accuracy of the simultaneous method for computing 19-year means from 
a shorter series. In his analysis, one station was selected as a mock subordinate. Then 19-
year equivalent datums were calculated using 1, 3, 6, and 12 month series of data. Since 
the true 19-year mean was known at the mock subordinate station, a set of residuals was 
generated by subtracting the value of the measured 19-year mean from each computed 
value. The mean and variance of each set of residuals were then computed for each datum 
for numerous stations pairing around the United States. The standard deviations for each 
station pair were pooled by region and have been the best estimate of accuracy for short 
term observations. The generalized one-sigma accuracy for tidal datums where 
determined from short series of tide record are shown in Table 1. 
 
Table 1 Generalized Accuracy of Tidal Datums Based on One-Sigma (Swanson 1974:12) 

Series Length 
(Months) East Coast (ft.) Gulf Coast (ft.) West Coast (ft.) 

1 0.13 0.18 0.13 
3 0.10 0.15 0.11 
6 0.07 0.12 0.08 
12 0.05 0.09 0.06 

 
 
However, as Swanson notes, “most secondary stations will be established no greater than 
half way between pairs used in the analysis. Thus the accuracies shown (above) can be 
thought of as a maximized mean accuracy for the tidal net.” (Swanson 1974:12) 
 
Carrying this logic a step further, a minimum error would be expected when the control 
and subordinate stations were very close together. In fact, if the two stations were right 
next to each other, the error in predicting the 19-year equivalent mean values would only 
be measurement error since the assumptions used in the simultaneous method would be 
completely valid. Finally, it seems reasonable to assume that the error in computing tidal 
datums might increase proportionately with the difference in the tidal characteristics 
between the control and subordinate tide stations. 
  

REGRESSION VARIABLES 
 
Regression analysis was used to determine which independent variables might explain 
the variation in the standard deviations computed by Swanson (the dependent variables). 
The regression model is in the form: 
 

Y = B1X1 + B2X2 + … + BiXi + A 
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Where Y is the dependent variable; X1, X2 … Xi are the independent variables; B1, B2 … 
Bi are the slope coefficients for the respective independent variables, and A is a constant. 
 
The independent variables (Xi) that proved to be highly significant are: 
 

1. ADHWI – The absolute difference in high water intervals measured in hours. 
ADHWI is obtained by subtracting the high water interval (HWI) of the control 
station from the HWI of the subordinate tide station and using the absolute value. 
HWI is defined as the average interval for all phases of the moon between the 
moon’s transit (upper or lower) over the local or Greenwich meridian and the 
following high water (Schureman 1975:9). ADHWI can be thought of as the 
average difference in time that the crest of the tidal waves passes the two tide 
stations. For example, if the Greenwich HWI for the control station is 6.21 hours 
and the Greenwich HWI for the subordinate station is estimated to be 7.5 hours 
then; ADHWI = |(7.5 – 6.21)| = 1.3 hours. Note that ADHWI is always positive. 
The HWI value for the control station will always be known and the HWI value 
for the subordinate station can be estimated to within ½ hour with a corresponding 
error in the prediction of the dependent variable of only 0.005 feet or less. This 
estimate of HWI can be obtained by interpolating HWI between historic tide 
stations or from cotidal charts. Once tidal data has been collected at the 
subordinate station the HWI can be computed to check the original estimate. 

 
2. ADLWI – The absolute difference in low water intervals measures in hours. This 

is the low water equivalent to ADHWI. ADHWI and ADLWI are highly 
correlated and in most cases ADHWI can be used in the place of ADLWI. 

 
3. SRGDIST – The square root of the geodetic distance between the control and 

subordinate tide stations measured in nautical miles. It can be scaled off a nautical 
chart or computed by using the geographic coordinates of the two tide stations. 
The geodetic distance can be within 15% of the actual distance without degrading 
the results. 

 
4. MNR- The mean range ratio is the absolute value of the difference in mean range 

of tide between the control and subordinate tide station divided by the mean range 
at the control station. For example, if the mean range of tide at the control station 
is 10.2 feet and the mean range at the subordinate station is estimated to be 12.1 
feet then: 

 
MNR = |(12.1 -10.2)| / 10.2 = 0.19 

 
Note that MNR is always positive. The mean range of the subordinate station can 
be estimated to within 20% of the true range without noticeably degrading the 
final results. Once tidal data has been collected at the subordinate station the 
estimate can be verified. 
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5. SRSMN – The square root of the sum of the mean ranges is computed by adding 
the mean ranges of the control and subordinate stations and then taking the square 
root of this sum. For example, if the mean range at the control station is 5.5 feet 
and the mean range of the subordinate station is estimated to be 6.0 feet then:  

 
SRSMN = (5.5 + 6.0)1/2 = 3.4 feet 

 
The mean range of the subordinate station can be estimated to within 50% of the 
true range without noticeably affecting the results. 

 
6. ADMN – The absolute value of the difference in mean range of tide between the 

control and subordinate tide station measured in feet. It is significant only when 
using the Alternate Method of Simultaneous Comparison. 

 
 

The dependent variables (Y) that were used in this investigation are the standard 
deviations (in feet) of the mean differences between computed and accepted values of 
MHW and MLW for station pairings along the east coast of the United States. These 
values were taken from Swanson’s report (Swanson 1974: 22 - 28). A separate regression 
analysis was done for each table where Swanson used monthly mean values and running 
means of monthly values over 3, 6, and 12 months. The corresponding dependent 
variables (Y) are labeled S1M, S3M, S6M, and S12M respectively. When referring to 
these dependent variables in general, the symbol SiM is used. 

 
DATA DEFICIENCIES AND REJECTIONS 

 
The regression analysis is highly significant. However, validity of the results is also 
dependent on the validity of the data. The data used for the independent variables are 
reliable and accurate. Unfortunately, the data used for the dependent variable (SiM) have 
deficiencies in: (1) sample size, (2) interdependence of station pairs, and (3) 
representation of the population of interest. 

 
1. Due to lack of control stations with sufficient simultaneous data, Swanson was 

only able to use 7 station pairs on the Gulf Coast, 11 stations pairs on the West 
Coast, and 30 station pairs on the East Coast.4 The data from the West Coast and 
Gulf Coast were not used to develop the regression equations because of the small 
sample sizes and due to the fact that the distance between station pairs were so 
much greater than the population of interest. The average distance between station 
pairs on the West, Gulf, and East Coast are 166, 220, and 96 nautical miles 
respectively. Another reason for only using East Coast data is the fact that the tide 
along the entire East Coast is produced by the same Oceanic Oscillating System 
for the Semidaily Tide-Producing Forces. On the West coast, the relative sea level 
is changing at dramatically different rates between some station pairs, and on the 
Gulf Coast, the tide is mixed at some stations and diurnal at others. Therefore, the 
station pairs along the East Coast are more representative of typical control-

4 Appendix B is a histogram for S1M and S12M (MHW). 
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subordinate station pairing that are relatively close together, generated by the 
same oceanic system, experience similar long term changes in sea level and are of 
the same type of tide. However, the results of this study can still be used for 
accuracy estimations on the West and Gulf coasts as will be shown later. 

 
2. To test extreme conditions, Swanson used the same control station in more than 

one station pairing. For example, Baltimore, MD., the Battery, N.Y., and 
Mayport, Fla. are used four times each, and Washington D.C. is used three times. 
This raises questions about the interdependence and the randomness of the 
sample. To check the effect of using the same control station many times, an 
Oneway Analysis of Variance was used to test the hypothesis that the means of 
SiM for each group of stations having a common control station and all other 
station pairs on the East Coast are equal. This hypothesis was tested for MHW 
and MLW values separately. The hypothesis could not be rejected, even at the 0.8 
level of significance, for MHW values.5 However, the hypothesis was rejected at 
the 0.04 level of the significance for MLW values. A contrast t-test showed that 
this rejection was caused by the station Mayport, Fla. It is interesting to note that 
MHW values at Mayport are not noticeably affected by these problems in the low 
water datum. 

 
Although Swanson’s analysis shows the computed MLW datum to be slightly less 
accurate than the MHW datums this difference is not statistically significant. 
Using a correlated t-test on the SiM values computed by the standard method the 
hypothesis that difference between the accuracy for MLW and MHW datums for 
each station pairing is zero could not be rejected at the 0.1 level of significance. 
This was true with or without the station pairs containing Mayport. This 
conclusion is verified by a nonparametric sing test. However, if the same 
correlated t-test is applied to the MLW and MHW datums computed by the 
alternate method the hypothesis is rejected at the 0.02 level of significance. When 
using the alternate method the computed MLW and MHW datums are completely 
independent of each other. In contrast, when using the standard method of 
simultaneous comparison the computed MLW and MHW datums are not 
completely independent. 
 
With the standard method both the corrected mean tide level and the range ratio 
are used to compute MLW and MHW, but they are dependent upon the observed 
MLW and MHW values. Fortunately, this interdependence is small. A positive 
error, for instance, in the corrected mean tide level is offset by a negative error in 
the range ratio calculation. The actual sign and magnitude depends on the ratio of 
the range of tide at the control station for the comparison period divided by the 
19-year mean at the control station. For example, a measurement error that causes 
MLW to record 0.1 foot to low will only affect MHW by about 0.005 feet if the 
mean range of tide at the control station for the comparison period is 10% of the 
19-year mean. If the mean range for the comparison period equals the 19-year 
mean, then the error in mean high water is zero. 

5 Appendix C summarizes the oneway analysis of variance results. 
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Separate regression equations were developed for MLW and MHW datums. The 
accuracy of these two datums is believed to be different because of the errors 
observed only in the low waters at Mayport. A twoway analysis of variance test, 
controlling for the covariates used in the regression equation, showed that the 
error in MLW at Mayport was 0.05 feet greater than would have been expected. 
Therefore, the four station pairs using Mayport were rejected for the MLW 
regression analysis. But all the data was used for the MHW analysis. 
 
A second test for interdependence was to run the regression analysis without the 
other station pairs that might be interdependent. The results were basically the 
same, the small differences are assumed to be attributed to the smaller sample 
size. Therefore, with the exception of MLW values using Mayport, it is conclude 
that the interdependence of the dependent variables (SiM) is not great enough to 
significantly degrade the results of this analysis. 
 

3. The final and most serious deficiency in the data is the representativeness of the 
sample to the population of interest. All of the station pairs used by Swanson were 
between control stations that are usually located far apart in harbors and adjacent 
to deep water channels. But most subordinates are relatively close to control 
stations and are located in shallow estuaries. However, at this time, the data from 
Swanson’s report is the best data available. 

 
The criteria used to select the recommended independent variables over other viable 
options are listed in order of importance. 
 
1) The standard deviation of the dependent variable about the regression line (Sx.y). 
2) The total percent of the variation explained by the regression equation (R2). 
3) The overall significance level of the regression equation. 
4) The number and complexity of the variables. 
5) The significance to enter a new variable. 
 

STANDARD METHOD OF SIMULTANEOUS COMPARISION 
 
The equations are in the form. 
 

S1M = 0.0112 ADHWI + 0.0074 SRGDIST + 0.017. 
                            (Ft.)                  (Hrs.)                      (N.M.1/2) 
 
However, they are presented in Tables 2 and 3 in tabular form to facilitate the 
showing of the criteria parameters. Appendix D shows the Person coefficient of linear 
correlation (R) for all variables while Appendix E and F list all the data used to 
determine the regression coefficients.6 

6 The computations were done at the University of Washington Computer Center using the Statistical 
Package for the Social Sciences, version 7.0 dated June 27, 1977. 
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To demonstrate the value of these regression equations, let us look at examples using 
stations pairs from Swanson’s report based on MHW monthly mean values. First, let 
us take the station pair Hampton Roads, Va. to Washington D.C., where the stations 
are far apart (120.1 n.m.). 
 
     S1M = 0.0112 ADHWI + 0.0074 SRGDIST + 0.017 (From Table 2) 

           = 0.0112 (12.05 Hrs.) + 0.0074 (120.1 N.M.1/2) + 0.017 (From Appendix E) 
     S1M = 0.223 ft. 
 
This is only 0.008 feet less than the 0.231 feet obtained from Swanson’s report. But, 
the generalized accuracy statement is 0.13 feet or 0.131 feet in error. Obviously, the 
regression equation is much closer to the actual value in this case. 
 
 
 

Table 2 Regression Equations and Parameters Standard Method of Simultaneous 
Comparison 

 
Mean High Water 

Independent 
Variables B 

STD 
Error of 

B 

Sign to 
Enter 

Sign. 
Overall Sx.y (ft.) R2 

S1M (Dependent Variable) 
ADHWI 0.0112 ± 0.0014 < 0.0005    

SRGDIST 0.0074 ± 0.0011 < 0.0005    
(Constant) 0.017 ± 0.0110 0.135 < 0.0005 0.021 0.79 

S3M (Dependent Variable) 

ADHWI 0.0085 ± 0.0014 < 0.0005    
SRGDIST 0.0054 ± 0.0011 < 0.0005    
(Constant) 0.018 ± 0.0108 0.100 < 0.0005 0.021 0.70 

S6M (Dependent Variable) 

ADHWI 0.0047 ± 0.0012 0.001    
SRGDIST 0.0039 ± 0.0009 0.000    
(Constant) 0.022 ± 0.0091 0.023 < 0.0005 0.018 0.54 

S12M (Dependent Variable) 

SRGDIST 0.0017 ± 0.0007 0.019    
SRSMN 0.0068 ± 0.0027 0.019    

(Constant) 0.012 ± 0.0099 0.238 0.004 0.015 0.28 
 

<= less than 
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Equation Form: 
 

S1M   = 0.0112 ADHWI + 0.0074 SRGDIST + 0.017 
S3M   = 0.0085 ADHWI + 0.0054 SRGDIST + 0.018 
S6M   = 0.0047 ADHWI + 0.0039 SRGDIST + 0.022 
S12M = 0.0068 SRSMN + 0.0017 SRGDIST + 0.012 

 
 

Table 3 Regression Equations and Parameters Standard Method of Simultaneous 
Comparison 

 
Mean Low Water 

Independent 
Variables B 

STD 
Error of 

B 

Sign to 
Enter 

Sign. 
Overall Sx.y (ft.) R2 

S1M (Dependent Variable) 
ADHWI 0.0068 ± 0.0013 < 0.0005    

SRGDIST 0.0053 ± 0.0014 0.001    
MNR 0.0302 ± 0.0080 0.001    

(Constant) 0.029 ± 0.0127 0.033 < 0.0005 0.019 0.76 

S3M (Dependent Variable) 

ADHWI 0.0043 ± 0.0011 0.001    
SRGDIST 0.0036 ± 0.0013 0.010    

MNR 0.0255 ± 0.0070 0.001    
(Constant) 0.029 ± 0.0111 0.017 < 0.0005 0.017 0.68 

S6M (Dependent Variable) 

ADHWI 0.0019 ± 0.0010 0.084    
SRGDIST 0.0023 ± 0.0011 0.062    

MNR 0.0207 ± 0.0064 0.004    
(Constant) 0.030 ± 0.0101 0.008 < 0.0005 0.015 0.49 

S12M (Dependent Variable) 

MNR 0.0128 ± 0.0057 0.034    
SRSMN 0.0045 ± 0.0027 0.110    

(Constant) 0.025 ± 0.0088 0.010 0.038 0.014 0.18 
 

<= less than 
Equation Form: 
 

S1M   = 0.0068 ADHWI + 0.0053 SRGDIST + 0.0302 MNR + 0.029 
S3M   = 0.0043 ADHWI + 0.0036 SRGDIST + 0.0255 MNR + 0.029 
S6M   = 0.0019 ADHWI + 0.0023 SRGDIST + 0.0207 MNR + 0.030 
S12M =                               0.0045 SRSMN + 0.0128 MNR + 0.025 
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Next let us look at the station pair Fernandina, Fla. to Mayport, Fla. where the 
stations are close to each other (16.6 n.m.) 
 

S1M = 0.0112 ADHWI + 0.0074 SRGDIST + 0.017  
                = 0.0112 (40 Hrs.) + 0.0074 (16.6 N.M.1/2) + 0.017  

                                         S1M = 0.052 ft. 
 
This is only 0.001 feet less than the 0.053 feet obtained from the Swanson analysis. 
But the generalized accuracy is still 0.13 feet or 0.08 feet in error. Again the 
regression equation is much closer to the correct value. Recall that Mayport had 
errors in the low water datums of about 0.05 feet greater than would have been 
computed by the regression equation. 
 
Of course, not all station pairs will be as close to the actual value as shown in these 
examples. Table 4 compares the results of predicting S1M at MHW for all station 
pairs used in Swanson’s report using the regression equations and the generalized 
accuracy statements. The standard deviation (Sx.y) of S1M about the regression line is 
0.021 feet (from Table 2). A set of residuals was generated by subtracting the 
generalized accuracy (0.13 feet) from S1M determined by Swanson for each station 
pair. The standard deviation of these residuals is 0.047 feet. This is twice as large as 
the standard error about the regression line. The error in using the generalized 
accuracy would be even greater for typical subordinate stations that are closer 
together than the primary control stations used in Swanson’s analysis. 
 
At the 95% confidence level the actual value of the predicted S1M should be within 
±2 (Sx.y) or 2 (0.021) = ± 0.042 feet of the computed value. Finally, at the 99.7% 
confidence level the actual value should be within ± 3 (Sx.y) or 3 x (0.021) = ± 0.063 
feet of the computed value. 
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PREDICTING ACCURACIES FOR WEST AND GULF COAST STATIONS 
 

When S1M is predicted for each of the 17 station pairs analyzed by Swanson on the West 
and Gulf coasts (See Table 4) only one station pair does not fall with ± 3 (Sx.y) (Crescent 
City, CA to San Francisco, CA). In this case the distance (250 n.m.) between station pairs 
is excessive. These equations, like all regression equations, are the most accurate at 
average parameter values and deteriorate as these values diverge from the mean values 
used to calculate the regression equation. Also, Crescent City and San Francisco 
experience drastically different meteorological conditions. Furthermore, relative sea level 
is rising at San Francisco but dropping at Crescent City. (Hicks 1973:10 - 11). Finally, 
there is a seiche at Crescent City that may affect the datum accuracy. 

 
Only four station pairs do not fall within ±2 (Sx.y): 

• Seattle, WA to Friday Harbor, WA 
• Neah Bay, WA to Crescent City, CA 
• Galveston, TX to Eugene Island, LA 
• St. Petersburg, FL to Ceder Key, FL 

 
In three of these cases the type of tide is different at the two tide stations for at least part 
of the month. In the one remaining case (Neah Bay to Crescent City) the distance (390 
n.m.) is excessive and Crescent City may be adversely affected by the seiche. 
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The S12M (yearly means) for San Francisco to Crescent City and Neah Bay to Crescent 
City are much closer to their actual values than S1M. The difference between S12M and 
the observed value is only 0.007 feet with Neah Bay and 0.025 feet with San Francisco. 
Neah Bay is improved because the excessive effects o weather and distance have been 
averaged. The San Francisco pair is improved less than the Neah Bay pair because the 
effects of sea level change are not averaged with a year of data. 
 
There is insufficient data to develop separate regression equations for the west and gulf 
coast. However, there is also insufficient information to reject the hypothesis that the east 
coast regression equations are also valid for west gulf coast stations. In fact, the limited 
data indicates that the regression equations are valid; especially when the weather 
changes between stations are modest, the sea level changes are approximately equal and 
the type of tide is the same at both stations. 
 
 

ALTERNATE METHOD OF SIMULTANEOUS COMPARISON 
 
When the full range of tide can not be measured at a subordinate station, the alternate 
method of simultaneous comparison is used for MHW determination. This method 
appears to be slightly more accurate than the standard method when the range of tide is 
about the same at both tide station. However, as the difference in the range of tide 
between the two stations increases, the accuracy of the alternate method deteriorates. 
 
Table 6 shows the regression equations and parameters for the alternate method and 
Appendix G shows the regression data. ADMN is the absolute difference in mean range, 
measured in feet, between the control and subordinate tide station. If Table 6 is compared 
with Table 2, it will be seen that the slope coefficients (B) are slightly lower for ADHWI 
and SRGDIST. Therefore, when ADMN is zero S1M, S3M, and S6M will be slightly 
smaller using the alternate method. But, this difference is not statistically significant. 
However, the opposite affect of ADMN can be significant. 
 
Table 6 Regression Equations and Parameters Alternate Method of Simultaneous Comparison 

 
Mean High Water 

Independent 
Variables B 

STD 
Error of 

B 

Sign to 
Enter 

Sign. 
Overall Sx.y (ft.) R2 

S1M (Dependent Variable) 
ADHWI 0.0108 ± 0.0013 < 0.0005    

SRGDIST 0.0063 ± 0.0010 < 0.0005    
ADMN 0.0020 ± 0.0014 0.174    

(Constant) 0.019 ± 0.0195 0.051 < 0.0005 0.019 0.82 
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S3M (Dependent Variable) 

ADHWI 0.0082 ± 0.0013 0.0005    
SRGDIST 0.0046 ± 0.0010 0.0005    

ADMN 0.0026 ± 0.0014 0.084    
(Constant) 0.022 ± 0.0096 0.034 < 0.0005 0.019 0.71 

S6M (Dependent Variable) 

ADHWI 0.0044 ± 0.0011 0.001    
SRGDIST 0.0031 ± 0.0009 0.002    

ADMN 0.0026 ± 0.0014 0.084    
(Constant) 0.024 ± 0.0085 0.009 < 0.0005 0.017 0.55 

S12M (Dependent Variable) 

SRGDIST 0.0017 ± 0.0008 0.037    
SRSMN 0.0085 ± 0.0035 0.023    
ADMN 0.0003 ± 0.0014 0.856    

(Constant) 0.006 ± 0.0113 0.575 0.002 0.015 0.35 
 

< = less than 
Equation Form: 
 

S1M   = 0.0108 ADHWI + 0.0069 SRGDIST + 0.0020 ADMN + 0.019 
S3M   = 0.0082 ADHWI + 0.0046 SRGDIST + 0.0026 ADMN + 0.022 
S6M   = 0.0044 ADHWI + 0.0031 SRGDIST + 0.0026 ADMN + 0.024 
S12M = 0.0017 SRGDIST + 0.0085 SRSMN + 0.0003 ADMN + 0.006 

 
 
It is interesting to note that for yearly means (S12M) the independent variable ADMN is 
not significant. This implies that for the range of cases analyzed the difference in 
accuracy between the standard and alternate method is not significant for yearly means. 
The largest ADMN used to develop the regression was 10.4 feet. 
 
To use these regression equations the mean range of tide at the subordinate station must 
be estimated since the full range is not measured. It should be estimated to within 2 feet. 
Fortunately, a method for approximating this mean range has been developed by Bernard 
Zetler (Zetler 1981). An arbitrary time scale between three and six hours is chosen for 
plotting the high water curve at both the subordinate and control station. Then the 
elevation on each plot is found where the tide is above this elevation for preferably six 
hours (See Figure 1.). The height from this elevation to high water is called Rc at the 
control station and Rs at the subordinate station. Then the mean range at the subordinate 
station is computed by: 
 

MNs = Rs/Rc x MNc; 
 
where MNc is the 19-year mean range at the control station. 
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ACCURACY OF MEAN LOWER LOW WATER (MLLW), MEAN HIGHER 
HIGH WATER (MHHW), AND MEAN TIDE LEVEL (MTL) 
 
Although insufficient data was available to test the accuracy of MLLW and MHHW 
datums, there is no reason to believe that they are not as accurate and MHW and MLW 
datums. Using the 11 west stations, where MLLW and MHHW were computed, the 
correlation (R) between MHW and MHHW is 0.998 and the correlation between MLW 
and MLLW is 0.996. Using a correlated t-test the hypothesis that the difference between 
the accuracy of the MHW and MHHW datums is zero can not be rejected at the 0.1 level 
of significance. The same conclusion is also valid for MLW and MLLW. Therefore, it is 
assumed that the accuracy of the MLLW and MHHW datums are the same as the MLW 
and MHW datums respectfully. 
 
Separate regression equations were not developed for MTL. However, the correlation (R) 
between MHW and MTL is 0.919. Also, using a correlated t-test for all the station pairs 
in Swanson’s report the hypothesis that the difference between the accuracy of MHW and 
MTL datums is zero can not be rejected at the 0.1 level of significance. Therefore, it is 
assumed that the accuracy of MTL datums is approximately the same as MHW datums. 
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ACCURACY USING SECONDARY CONTROL STATIONS 
 
A common practice is to compute the 19-year equivalent tidal datums for a secondary 
control tide station (i.e., a tide station with 12 or more months of data) compared with a 
primary control. Then the tidal datums for nearby tertiary tide stations (i.e. a station with 
less than 12 months of data) are computed by comparing them with the secondary control 
station. If the simultaneous comparison between the primary and secondary is 
independent of the comparison between the secondary and tertiary then the accuracy of 
the tertiary tide station (SiMt) would be: 
 

2
T-S

2
S-Pt SiM  SiM  SiM +=  

 
Where SiMP-S and SiMS-T are the computed accuracies using the equations in table 2 and 
3 for the secondary to primary pairing and the tertiary to secondary pairing respectfully. 
To demonstrate this technique assumes the following: 
 

Station HWI (Hrs.) GDIST (n.m.) MN (ft.) Series 
     

Primary 10.0  4.0 19 yr. 
  50   

Secondary 8.0  3.0 12 mo. 
  8   

Tertiary 8.1  3.0 1 mo. 
 
Then:   

S12MS-P = 0.0017 SRGDIST + 0.0068 SRSMN + 0.012 
                                                         = 0.0017 (50)1/2 + 0.0068 (4.0 + 3.0)1/2 + 0.012 
                                                         = 0.042 feet 
 
 

S1MT-S = 0.0112 ADHWI + 0.0074 SRGDIST + 0.017 
                                                       = 0.0112 (8.1 – 8.0) + 0.0074 (8)1/2 + 0.017 
                                                       = 0.039 feet 
 
                                          22

t 039.0042.0S1M +=  
                                                    = 0.056; say 0.06 feet. 
 
If the tertiary station was compared directly to the primary station the accuracy would be: 
 

S1M = 0.0112 (1.9) + 0.0074 (58)1/2 + 0.017 
                                                       = 0.095 feet; say 0.10 feet 
 
Note that the accuracy is improved 30%, in this case, by going through the secondary tide 
station. 
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INTERPOLATING AND EXTRAPOLATION OF THE DEPENDENT 
VARIABLE 
 
Although the regression equations in table 2 and 3 are only for 1, 3, 6, and 12 months of 
data they can be used to estimate the accuracies of any other data series equal to or 
greater than one month. For periods less than one month an extrapolation could be 
dangerous since the astronomical cycles caused by the moons monthly orbit, declination, 
and interaction with the sun are not averaged as they are with the monthly data used in 
the regression analysis. These effects on the accuracy of a tidal series less than one month 
are not well documented.7 
 

7 Bernard Zetler discusses using short series of tidal data to compute tidal datums (Zetler 1981). 
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For periods between one and 12 months the accuracy of tidal datums can be safely 
interpolated. Figure 2 shows a plot for the computed accuracy for 1, 3, 6, and 12 months 
at 2 diverse station pairs along with an average station pair. Note that the curves are 
smooth and can be conservatively approximated by straight line interpolation. 
 
To compute the accuracy of a tidal datum based on 9 months of data, for example, first 
compute the accuracy for 6 and 12 months using the regression equations in table 2 or 3. 
Then use straight line interpolation to determine the 9 months value. In this case, the 
value would be half way between the 6 month and 12 month value. 
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An interpolation between one year of data and 19 years is risky; but, possible for practical 
purposes. At 19 years the theoretical error should be zero. Of course systematic 
measurement errors would still be present. But if the data is carefully collected these 
errors will be small. Also, Swanson (Swanson 1974:10) showed that the systematic error 
due to simultaneous comparisons is less than 0.005 feet in general over a 19 year period. 
Figure 3 shows a typical plot of accuracy versus the length of data series. Note that a 
smooth curve fit of the data points would produce a line that was below the straight lines 
shown. Therefore, accuracy statements based on the straight line interpolation should be 
conservative. The change in slope of the line after one year is reasonable. After one year 
of data all the major astronomical and meteorological cycles have been measured. 
 
As an example, if S12M equals 0.06 feet then the accuracy for a 5 year data series 
(S60M) at the same subordinate station, compared with the same control station, would 
be: 
 

feet04.0
yr. 18

yr. 5 - yr. 18 0.06  S60M ==  

 
These accuracy statements for data series greater than one year are the best estimate, 
however, they should not be considered as reliable as the Sx.y values shown in tables 2 
and 3. 
 

19 
 



 

FINAL ACCURACY STATEMENT 
 
The SiM values are standard deviations that have a standard deviation of Sx.y about the 
regression line. Therefore, assuming that Sx.y and SiM are independent, the final accuracy 
statement for a given station pair should be:  
 

2
x.y

2
F SSiMSiM +=  

20 
 



 
For example, if S1M = 0.080 for the MHW datum, then Sx.y = 0.021 from Table 2 and: 
 

feet 083.00.0210.080SiM 22
F =+=  

 
Fortunately, this refinement is small compared to SiM and therefore can be ignored for 
practical purpose, except when the predicted error is smaller than 0.04 feet. 
 

DISCUSSION OF INDEPENDENT VARIABLES 
 
All regression equations are most accurate at the average values for the independent 
variables. Extrapolation beyond the range of independent variables can be risky. The 
average values for the independent variables are shown in Appendix E and F. The 
maximum values will rarely be exceeded; 11.2 hours for ADHWI, 350 n.m. for geodetic 
distance, and 18.2 feet for the mean range. The minimum values for ADHWI (0.01 hours) 
and mean range (0.9 feet) will rarely be encountered too. Unfortunately, the minimum 
geodetic distance analyzed was only 14.6 n.m. However, distances less than 14.6 n.m. are 
not a blind extrapolation since SiM for a geodetic distance of zero and ADHWI of zero is 
known to be zero plus the measurement error. This measurement error checks intuitively 
with the constants in the regression equations. 
 
A comparison of Tables 2 and 3 also shows that the constant is generally larger for low 
water computations. This may be due to the fact that instrument errors involved in 
measuring the tide are more pronounced at low waters. For example, noise in the tide 
record is more likely at low water than at high water since as the tide rises, the stilling 
well becomes more effective at dampening the noise caused by waves. 
 
The variation in the dependent variable (SiM) is caused by deficiencies in the 
assumptions of the Simultaneous Computation Method. These deficiencies are due to the 
fact that the tidal wave is continually being distorted in different ways by bottom friction, 
irregular basins, reflections, resonance, co-oscillation, weather and many other lesser 
factors. As the standing wave from the oceanic basins approaches the coastal waters it 
usually becomes a progressive wave. This progressive wave will travel at a velocity that 
is proportional to the square root of the depth of the water (Marmer 1926:79). Hence the 
shallower the water the longer it takes the tidal wave to progress inland through bays, 
rivers, and estuaries. Also, the longer the travel time of this wave the more it is going to 
be distorted by bottom friction and irregular basins. ADHWI is correlated to SiM since it 
is a direct measure of this travel time and therefore an indirect measure of the effects of 
bottom friction and irregular basins. 
 
The second important variable used in the regression equations is SRGDIST. This 
measure of geodetic distance between stations is a surrogate for all geographic variables. 
Weather is probably the most significant factor. For example, a change in barometric 
pressure of one inch should be accompanied by a change in the level of the water of a 
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little more than one foot (13 inches) since mercury is about 13 times heavier than water. 
The wind also has a great effect on the water level depending on the fetch, duration, and 
direction of the wind along with the depth of the water. The farther apart two stations are, 
the greater the likelihood that the weather will be different at each station. 
 
Geodetic distance may also be an approximate measure of the distance traveled by the 
tidal wave and therefore a measure of its distortion. The water distance (i.e. the distance 
traveled by a boat) between the control station and the subordinate is just as significant as 
geodetic distance. Geodetic distance was selected for the regression equations because it 
is easier to obtain and is not subjective. 
 
The last three independent variables used in the regression equations are SRSMN and 
MNR and ADMN. All of these measure the differences in the tidal wave between the 
control and subordinate stations directly. Examination of Table 2 and 3 shows that R2 
decreases as the length of the data series increases. As more data is used in the 
simultaneous comparison computations the variations explained by ADWHI and 
SRGDIST become less as the variations they explain are averaged out. The smaller 
correlation between SRSMN and MNR with the dependent variable finally becomes 
more significant with 12 months of data (S12M). 
 
A variable that could not be quantified is the quality of data collection at each station. I 
believe that a large part of the unexplained variation is due to poor data quality. If this is 
true it may be possible to improve accuracies substantially by improving the quality of 
data collection. 
 

SUMMARY 
 
When using these equations it should be remembered that the database used to develop 
the equations may not be totally representative of the population of all control-
subordinate tide stations pairs. Although these regression equations are the best available 
estimate of the datum accuracy they may be unreliable in areas which have widely 
divergent characteristics. For example, stations in a river environment may be influenced 
by unusually large (or small) seasonally runoff. Also station pairs in which each station is 
influenced by different oceanic systems or different types of tide may not conform to the 
model. Finally, low water datums are more susceptible to measurement errors that can 
not be statistically quantified. These errors must be minimized through careful data 
collection. 
 
The regression equations in Table 2 and 3 are at least twice as accurate as the present 
generalized method of predicting the standard deviation (or accuracy) of Simultaneous 
Comparison Method computations for 19-year equivalent tidal datums form short series 
of tidal data. These regression equations have the additional benefit of accounting for the 
fact that most subordinate stations are much closer together than those control station 
pairs used to develop the present generalized accuracy statements. 
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Appendix A 

 
 
Simultaneous Comparison Computational Methods  
 
Notation:  
 
MTL   - The 19 year accepted value of mean tide level  
MHW - The 19 year accepted value of mean high level  
MLW - The 19 year accepted value of mean low water  
MR - The 19 year accepted value of mean range 
TL - Observed monthly mean tide level  
HW - Observer monthly mean high water  
LW - Observer monthly mean low water  
R - Observed monthly mean range  
s - Subscript used to indicate subordinate station  
c - Subscript used to indicate control station  
C - Observed values corrected to estimate the 19 year accepted values  
 
Equations: 
 
Standard Method  
 
CTLs = (TLs - TLc) + MTLc  
CRs = (Rs/Rc) MRc  
CLWs = CTLs - (½) CRs  
CHWs = CLWs + CRs 
 
Mixed tide computations required correction to the diurnal inequalities that are not shown 
here.  
 
Alternate Method  
 
CTL = TLs -TLc + MTLc  
CLW = (LWs - LWc) + MLWc  
CHW = (MWs - HWc) + MHWc 
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